2,583 research outputs found

    A Nonextensive Statistical Physics Analysis of the 1995 Kobe, Japan Earthquake

    Get PDF
    This paper presents an analysis of the distribution of earthquake magnitudes for the period 1990–1998 in a broad area surrounding the epicenter of the 1995 Kobe earthquake. The frequency–magnitude distribution analysis is performed in a nonextensive statistical physics context. The nonextensive parameter q M , which is related to the frequency-magnitude distribution, reflects the existence of long-range correlations and is used as an index of the physical state of the studied area. Examination of the possible variations of q M values is performed during the period 1990–1998. A significant increase of q M occurs some months before the strong earthquake on April 9, 1994 indicating the start of a preparation phase prior to the Kobe earthquake. It should be noted that this increase coincides with the occurrence of six seismic events. Each of these events had a magnitude M = 4.1. The evolution of seismicity along with the increase of q M indicate the system’s transition away from equilibrium and its preparation for energy release. It seems that the variations of q M values reflect rather well the physical evolution towards the 1995 Kobe earthquake

    Aperiodic variability of low-mass X-ray binaries at very low frequencies

    Get PDF
    We have obtained discrete Fourier power spectra of a sample of persistent low-mass neutron-star X-ray binaries using long-term light curves from the All Sky Monitor on board the Rossi X-ray Timing Explorer. Our aim is to investigate their aperiodic variability at frequencies in the range 1 x 10^{-7}-5 x 10^{-6} Hz and compare their properties with those of the black-hole source Cyg X-1. We find that the classification scheme that divides LMXBs into Z and atoll sources blurs at very low frequencies. Based on the long-term (~ years) pattern of variability and the results of power-law fits (P ~ v^{-a}) to the 1 x 10^{-7}-5 x 10^{-6} Hz power density spectra, low-mass neutron-star binaries fall into three categories. Type I includes all Z sources, except Cyg X-2, and the atoll sources GX9+1 and GX13+1. They show relatively flat power spectra (a < 0.9) and low variability (rms < 20%). Type II systems comprise 4U 1636-53, 4U 1735-44 and GX3+1. They are more variable (20% < rms < 30%) and display steeper power spectra (0.9 < a < 1.2) than Type I sources. Type III systems are the most variable (rms > 30%) and exhibit the steepest power spectra (a > 1.2). The sources 4U 1705-44, GX354-0 and 4U 1820-30 belong to this group. GX9+9 and Cyg X-2 appear as intermediate systems in between Type I and II and Type II and III sources, respectively. We speculate that the differences in these systems may be caused by the presence of different types of mass-donor companions. Other factors, like the size of the accretion disc and/or the presence of weak magnetic fields, are also expected to affect their low-frequency X-ray aperiodic varibility.Comment: 9 pages, 6 figures. To be published in A&

    Measuring the broadband power spectra of active galactic nuclei with RXTE

    Get PDF
    We have developed a Monte Carlo technique to test models for the true power spectra of intermittently sampled lightcurves against the noisy, observed power spectra, and produce a reliable estimate of the goodness of fit of the given model. We apply this technique to constrain the broadband power spectra of a sample of four Seyfert galaxies monitored by the Rossi X-ray Timing Explorer (RXTE) over three years. We show that the power spectra of three of the AGN in our sample (MCG-6-30-15, NGC5506 and NGC3516) flatten significantly towards low frequencies, while the power spectrum of NGC5548 shows no evidence of flattening. We fit two models for the flattening, a `knee' model, analogous to the low-frequency break seen in the power spectra of BHXRBs in the low state (where the power-spectral slope flattens to \alpha=0) and a `high-frequency break' model (where the power-spectral slope flattens to \alpha=1), analogous to the high-frequency break seen in the high and low-state power spectra of the classic BHXRB Cyg X-1. Both models provide good fits to the power spectra of all four AGN. For both models, the characteristic frequency for flattening is significantly higher in MCG-6-30-15 than in NGC 3516 (by factor ~10) although both sources have similar X-ray luminosities, suggesting that MCG-6-30-15 has a lower black hole mass and is accreting at a higher rate than NGC 3516. Assuming linear scaling of characteristic frequencies with black hole mass, the high accretion rate implied for MCG-6-30-15 favours the high-frequency break model for this source and further suggests that MCG-6-30-15 and possibly NGC 5506, may be analogues of Cyg X-1 in the high state [ABRIDGED].Comment: 23 pages, accepted for publication in MNRA

    Discovery of multiple Lorentzian components in the X-ray timing properties of the Narrow Line Seyfert 1 Ark 564

    Full text link
    We present a power spectral analysis of a 100 ksec XMM-Newton observation of the narrow line Seyfert 1 galaxy Ark~564. When combined with earlier RXTE and ASCA observations, these data produce a power spectrum covering seven decades of frequency which is well described by a power law with two very clear breaks. This shape is unlike the power spectra of almost all other AGN observed so far, which have only one detected break, and resemble Galactic binary systems in a soft state. The power spectrum can also be well described by the sum of two Lorentzian-shaped components, the one at higher frequencies having a hard spectrum, similar to those seen in Galactic binary systems. Previously we have demonstrated that the lag of the hard band variations relative to the soft band in Ark 564 is dependent on variability time-scale, as seen in Galactic binary sources. Here we show that the time-scale dependence of the lags can be described well using the same two-Lorentzian model which describes the power spectrum, assuming that each Lorentzian component has a distinct time lag. Thus all X-ray timing evidence points strongly to two discrete, localised, regions as the origin of most of the variability. Similar behaviour is seen in Galactic X-ray binary systems in most states other than the soft state, i.e. in the low-hard and intermediate/very high states. Given the very high accretion rate of Ark 564 the closest analogy is with the very high (intermediate) state rather than the low-hard state. We therefore strengthen the comparison between AGN and Galactic binary sources beyond previous studies by extending it to the previously poorly studied very high accretion rate regime.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    Theory Explicating the Linkage Between Quality, Productivity and Competitive Position

    Get PDF
    Productivity has been of interest for generations, certainly since the beginning of the Industrial Revolution. Industrialists desired more output per person-hour and got it by using machines. Machine operators in sweat shops at low wages turned out phenomenal productivity. High productivity has always been linked to high profit

    Electromagnetic and Fluid Analysis of Collisional Plasmas

    Get PDF

    X-ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    Full text link
    We have characterized the energy-dependent X-ray variability properties of the Seyfert~1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening towards higher energies. Light curve cross correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6e-8 to 1e-4 Hz; this range includes the temporal frequency of the low-frequency power spectral density function (PSD) break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any AGN to date. Coherence is generally near unity at these temporal frequencies, though it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short time scales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar-mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.Comment: Accepted for publication in The Astrophysical Journal, 2005, vol. 635, p. 180; version 2 has minor grammatical changes; 23 pages; uses emulateapj

    Resistance Spikes at Transitions between Quantum Hall Ferromagnets

    Full text link
    We report a new manifestation of first-order magnetic transitions in two-dimensional electron systems. This phenomenon occurs in aluminum arsenide quantum wells with sufficiently low carrier densities and appears as a set of hysteretic spikes in the resistance of a sample placed in crossed parallel and perpendicular magnetic fields, each spike occurring at the transition between states with different partial magnetizations. Our experiments thus indicate that the presence of magnetic domains at the transition starkly increases dissipation, an effect also suspected in other ferromagnetic materials. Analysis of the positions of the transition spikes allows us to deduce the change in exchange-correlation energy across the magnetic transition, which in turn will help improve our understanding of metallic ferromagnetism.Comment: 6 pages, 3 figure
    • …
    corecore